M. A. / M. Sc. (Fourth Semester) Examination, 2020

(CBCS Course)

MATHEMATICS

Paper: First (MAT-C-401)

(Functional Analysis-II)

Maximum Marks: 60

Note: Attempt all questions. All question carry equal marks.

- 1. State and prove uniform boundedness theorem.
- **2.** State and prove open mapping theorem.
- **3.** Define the direct sum of two closed subspaces of a Hilbert space H. Show that if Y is a closed subspace of H then:

$$H = Y \oplus Z, Z = Y^1$$

- **4.** Explain the Gram-Schmidt orthogonalization process in an inner proudct space *X* in details.
- 5. State and prove the Riesz representation theorem for bounded linear functional's on a Hilbert space H.

M. A. / M. Sc. (Fourth Semester) Examination, 2020

(CBCS Course)

MATHEMATICS

Paper: MAT-C-402

(Fundamental of Computer Science-II)

Maximum Marks: 40

Note: Attempt all questions. All questions carry equal marks.

- **1.** Explain multilevel inheritance with a C++ program.
- **2.** Write short notes on :
 - (a) put () function
 - (b) get () function
- **3.** Explain different types of users.
- **4.** Explain different types of normalization.
- **5.** What is User Interface? Write in short about different types of user interface.

[1] MATH-023

M. A. / M. Sc. (Fourth Semester) Examination, 2020

(CBCS Course)

MATHEMATICS

Paper : MAT-E-403 (B)

(Mechanics)

Maximum Marks: 60

Note: Attempt all questions. All question carry equal marks.

- 1. State and prove theorem on total energy.
- 2. Derive Hamilton canonical equation.
- **3.** State and prove principle of Least action.
- **4.** Show that Poisson bracket are invariant under canonical transformation.
- **5.** Find the attraction and potential of a thin uniform rod at an external point.

[1] MATH-024

M. A. / M. Sc. (Fourth Semester) Examination, 2020

(CBCS Course)

MATHEMATICS

Paper: MAT-E-404(A)

(Theory of Linear Operator-II)

Maximum Marks: 60

Note: Attempt all questions. All question carry equal marks.

- 1. State and prove spectral theorem.
- 2. If E_1 and E_2 are compact, complex spectral measures s.f. $\int \lambda dE_1(\lambda) = \int \lambda dE_2(\lambda)$ then prove $E_1 = E_2$.
- 3. Let $S: D(S) \to H$ and $T: D(T) \to H$ be are densely defined linear operators in a complex hilbert space H. Then if $S \subseteq T$ prove T * C S *.
- **4.** Prove that the spectrum $\sigma(T)$ of a self-adjoint linear operator $T:D(T)\to H$ is real and closed. Where H is complex Hilbert space and D(T) is dense in H.
- 5. Prove that the multiplication operator is not bounded.

[1] MATH-025

M. A. / M. Sc. (Fourth Semester) Examination, 2020

(CBCS Course)

MATHEMATICS

Paper : (MAT-E-405-CA)

(Operations Research-II)

Maximum Marks: 60

Note: Attempt all questions. All questions carry equal marks.

1. The characteristics of a project schedule are as given below:

Inside this determine:

- (a) Construct PERT network
- (b) Compute earliest and latest expected time for each event
- (c) Find critical path

Activity	Time (days)	Activity	Time (days)
1-2	4	5-6	4
1-3	1	5-7	8
2-4	1	6-8	1
3-4	1	7-8	2
3-5	6	8-10	5
4-9	5	9-10	7

- 2. Give advantages of integer programming.
- **3.** Solve the game :

Player B

Player A
$$\begin{bmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2 \end{bmatrix}$$

- **4.** Define non linear programming problem. Also give the formulation of a non-linear programming problem.
- 5. Explain separable programming in detail.