http://www.ujjainstudy.com

ER-1402

M. A. / M. Sc. (First Semester) Examination, Nov.-Dec. 2019

MATHEMATICS

Paper: Second

(Real Analysis)

Time Allowed: Three hours

Maximum Marks: 40

Note: Attempt questions of all two sections as directed.

Distribution of marks is given with sections.

Section-'A'

(Short Answer Type Questions) 5×3=15

Note: Attempt all the questions. Each question carries 3 marks.

http://www.ujjainstudy.com

http://www.ujjainstudy.com

[· 2]

Unit-I

1. Define Refinement and Common Refinrment?

O

If $U(P, f, \alpha) - L(P, f, \alpha)$ holds for some partitions P and some ϵ , then it holds with the same ϵ for every refinement of P. http://www.ujjainstudy.com

Unit-II

2. Explain integration of vector-valued function.

Or

Define rearrangement of terms of a Series with example.

Unit-III

3. If $\{f_n\}$ is a sequence of continuous function on E and . if $f_n \to f$ uniformly on E, then f is continuous on E.

Or

State and prove M_n -test with an example.

Unit-IV

http://www.ujjainstudy.com

1 7 1

4. Define continuously differentiable functions.

Or

If f maps on open set $E \subset R^n$ into R^m 0 then φ the partial derivative $D_j f_i$ exists and are continuous on E, if $f \in C'(E)$ $(1 \le i \le m)$, $(1 \le j \le n)$.

Unit-V

5. Give the statement of inverse function theorem.

Or

Explain differential forms.

Section-'B'

(Long Answer Type Questions)

5×5=25

http://www.ujjainstudy.com

http://www.ujjainstudy.com

Note: Attempt all the five questions. Each question carries 5 marks.

Unit-I

6. If P^* is a refinement of P, then

$$L(P,f,\alpha) \leq L(P^*,f,\alpha)$$

http://www.ujjainstudy.com

 $U(P^*,f,\alpha) \leq W(P,f,\alpha)$

Or

Suppose $f \in R(\alpha)$ on [a,b] $m \le f \le M, \phi$ is continuous on [m,M] and $h(x)_2 \phi$ (f(x)) on [a,b], then $h \in R(\alpha)$ on [a,b].

Unit-II

http://www.ujjainstudy.com

7. State and prove Riemann's theorem.

Or

Show that $\{f_n\}$ coverges uniformly to a function f, where

$$f_n(x) = \frac{x}{1 + nx^2}$$
 $(n = 1, 2, 3, ...)$

Unit-III

8. State and prove Stone Weierstrass theorem.

Or

http://www.ujjainstudy.com

[5]

State and prove Cauchy criterian for uniform converngence.

Unit-IV

9. State and prove Abel's theorem.

Or

Let Ω be the set of all invertible linear operations on \mathbb{R}^n ,

If
$$A \in L(\mathbb{R}^n)$$
, and

$$||B-A|| \cdot ||A^{-1}|| < 1$$

Then $B \in \Omega$.

Unit-V

10. State and prove Implicit function theorem.

Or

State and prove Stoke's theorem.

http://www.ujjainstudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

http://www.ujjainstudy.com

http://www.ujjainstudy.com